6 research outputs found

    Development of a Control Strategy for the Hybrid Energy Storage Systems in Standalone Microgrid

    Get PDF
    The intermediate energy storage system is very necessary for the standalone multi-source renewable energy system to increase stability, reliability of supply, and power quality. Among the most practical energy storage solutions is combining supercapacitors and chemical batteries. However, the major problem in this kind of application is the design of the power management, as well as the control scheme of hybrid energy storage systems. The focal purpose of this paper is to develop a novel approach to control DC bus voltage based on the reference power\u27s frequency decomposition. This paper uses a storage system combined of batteries and supercapacitors. These later are integrated in the multi-source renewable energy system to supply an AC load. This technique uses the low-pass filters\u27 properties to control the DC bus voltage by balancing the generated green power and the fluctuating load. The hybrid storage system regulates power fluctuations by absorbing surplus power and providing required power. The results show good performances of the proposed control scheme, such as low battery current charge/discharge rates, lower current stress level on batteries, voltage control improvements, which lead to increase the battery life

    Modeling of Charge Transfer Inefficiency in a CCD with High Speed Column Parallel Readout

    Full text link
    Charge Coupled Devices (CCDs) have been successfully used in several high energy physics experiments over the past two decades. Their high spatial resolution and thin sensitive layers make them an excellent tool for studying short-lived particles. The Linear Collider Flavour Identification (LCFI) collaboration is developing Column-Parallel CCDs (CPCCDs) for the vertex detector of a future Linear Collider. The CPCCDs can be read out many times faster than standard CCDs, significantly increasing their operating speed. An Analytic Model has been developed for the determination of the charge transfer inefficiency (CTI) of a CPCCD. The CTI values determined with the Analytic Model agree largely with those from a full TCAD simulation. The Analytic Model allows efficient study of the variation of the CTI on parameters like readout frequency, operating temperature and occupancy.Comment: 5 pages, 13 figures, presented on behalf of the LCFI Collaboration, proceedings IEEE 2008 Nuclear Science Symposium, Dresden, Germany, and 11th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD08) 2008, Siena, Ital

    Radiation hardness studies in a CCD with high-speed column parallel readout

    No full text
    Charge Coupled Devices (CCDs) have been successfully used in several high energy physics experiments over the past two decades. Their high spatial resolution and thin sensitive layers make them an excellent tool for studying shortlived particles. The Linear Collider Flavour Identification (LCFI) collaboration is developing Column-Parallel CCDs (CPCCDs) for the vertex detector of the International Linear Collider (ILC). The CPCCDs can be read out many times faster than standard CCDs, significantly increasing their operating speed. The results of detailed simulations of the charge transfer inefficiency (CTI) of a prototype CPCCD are reported and studies of the influence of gate voltage on the CTI described. The effects of bulk radiation damage on the CTI of a CPCCD are studied by simulating the effects of two electron trap levels, 0.17 and 0.44 eV, at different concentrations and operating temperatures. The dependence of the CTI on different occupancy levels (percentage of hit pixels) and readout frequencies is also studied. The optimal operating temperature for the CPCCD, where the effects of the charge trapping are at a minimum, is found to be about 230 K for the range of readout speeds proposed for the ILC. The results of the full simulation have been compared with a simple analytic model

    Modeling of radiation hardness of a CCD with high-speed column parallel readout

    No full text
    Charge Coupled Devices (CCDs) have been successfully used in several high energy physics experiments over the past two decades. Their high spatial resolution and thin sensitive layers make them an excellent tool for studying short-lived particles. The Linear Collider Flavour Identification (LCFI) collaboration is developing Column-Parallel CCDs (CPCCDs) for the vertex detector of a future Linear Collider. The CPCCDs can be read out many times faster than standard CCDs, significantly increasing their operating speed. Radiation hardness is an important aspect in the CCD development. Bulk radiation damage in the silicon leads to electron traps and hence to charge transfer inefficiency (CTI). The effects of the two trap levels 0.17 and 0.44 eV are considered. We have extended our Analytic Model to include the effects of the shape of the signal charge packet and the clock voltage on the CTI determination. The CTI values determined with the Analytic Model largely agree with those from a full TCAD simulation
    corecore